Assessment of Geriatric-Specific Changes in Brain Texture Complexity Using a Backpropagation Neural Network Classifier

نویسندگان

  • R. Kalpana
  • S. Muttan
چکیده

A method to assess the aging of a human subject by modeling the devolution of the textural features in brain images using a backpropagation neural network (BPNN) is described in this paper. Normally, the brain white matter (BWM) undergoes degenerative changes in its physical and functional stochastics during the aging process. Relevant structural morphology observed in the brain complex can be measured via diffusion tensor magnetic resonance imaging (DTMRI). Using the underlying statistical details of the pixels in the brain image captured, BPNN is used to classify the distinct BWM parameters, which are then correlated to the subject’s age. The brain complex invariably shows an evolutionary changing trend (in the negative direction) in its textural features during the aging process. Clinical DTMRI datasets from subjects of different age groups are used to study the efficacy of the proposed method of correlating brain-textural degeneration versus age.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

Spectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network

Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...

متن کامل

Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography Images Using Wavelet Based Statistical Texture Features

The research work presented in this paper is to achieve the tissue classification and automatically diagnosis the abnormal tumor region present in Computed Tomography (CT) images using the wavelet based statistical texture analysis method. Comparative studies of texture analysis method are performed for the proposed wavelet based texture analysis method and Spatial Gray Level Dependence Method ...

متن کامل

Investigation of Mechanical Properties of Self Compacting Polymeric Concrete with Backpropagation Network

Acrylic polymer that is highly stable against chemicals and is a good choice when concrete is subject to chemical attack. In this study, self-compacting concrete (SCC) made using acrylic polymer, nanosilica and microsilica has been investigated. The results of experimental testing showed that the addition of microsilica and acrylic polymer decreased the tensile, compressive and bending strength...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2012